DO NOT OPEN THIS EXAM BEFORE YOU ARE TOLD TO BEGIN

NAME \qquad
ID Number \qquad

Useful information
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$.
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$.
$q=1.6 \times 10^{-19} \mathrm{C}$
$m_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} . m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$.
$k_{\mathrm{e}}=8.9875 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Grading

A	
B	
TOTAL	

\qquadCheck if solution is continued on the back.

Part A: Multiple choice questions (12)

1. (3) If $a=3.0 \mathrm{~mm}, b=4.0 \mathrm{~mm}, Q_{1}=60 \mathrm{nC}, Q_{2}=-80 \mathrm{nC}$, and $q=36 \mathrm{nC}$ in the figure, what is the magnitude of the total electric force on q ?

a. $\quad 5.0 \mathrm{~N}$
b. $\quad 4.4 \mathrm{~N}$
c. $\quad 3.8 \mathrm{~N}$
d. $\quad 5.7 \mathrm{~N}$
e. $\quad 0.60 \mathrm{~N}$
2. (3) Charge Q is distributed uniformly along a semicircle of radius a. Which formula below gives the correct magnitude of the electric field at the center of the circle?
a. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\pi}$.
b. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\pi a^{2}}$.
c. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{\pi a}$.
d. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{\pi a^{2}}$.
e. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \ell}{a^{2}}$.
3. (5) Which one of the following cannot be a statement of Gauss's Law for some physical situation?
a. $\quad 4 \pi r^{2} \varepsilon_{0} E=Q$.
b. $2 \pi r I \varepsilon_{0} E=Q$.
c. $\quad \varepsilon_{0} \oint \mathbf{E} \cdot d \mathbf{A}=\int \rho d V$.
d. $\quad \varepsilon_{0} \oint \mathbf{E} \cdot d \mathbf{A}=\rho$.
e. $\quad 2 \varepsilon_{0} E A=\int \sigma d A$.
4. (3) A hemispherical surface (half of a spherical surface) of radius R is located in a uniform electric field of magnitude E that is parallel to the axis of the hemisphere. What is the magnitude of the electric flux through the hemisphere surface?
a. $\quad \pi R^{2} E$
b. $\quad 4 \pi R^{2} E / 3$
c. $2 \pi R^{2} E / 3$
d. $\quad \pi R^{2} E / 2$
e. $\pi R^{2} E / 3$
\qquadCheck if solution is continued on the back.

Part B: Problems (88)

2. (44\%) Gauss's law

A solid insulating sphere of radius a carries a net positive charge $+3 Q$, uniformly distributed throughout its volume. Concentric with this sphere, is a conducting spherical shell with inner radius b and outer radius c, and having a net charge $-Q$, as shown in the figure below.

(a) (10) Show (in details) that the electric field in the region $r<a$ is $E=3 \mathrm{keQr} / a^{3}$
(b) (7) Find the electric field in the region $b>r>a$.
(c) (5) Find the electric field in the region $c>r>b$.
\qquadCheck if solution is continued on the back.
(d) (6) Determine the charge on the inner surface of the conducting shell (at $r=b$).
(e) (6) Find the electric field at $r>c$.
(f) (5) Make a plot of the magnitude of the electric field versus r.

(g) (5) What is the flux across a cube concentric to the two spheres with side $l>2 c$?
\qquad
Check if solution is continued on the back.
3.(24\%) The \mathbf{x}-axis is the symmetry axis of a stationary uniformly charged ring of radius R and charge Q. A point charge Q of mass M is initially at rest at the center of the ring. When it is displaced slightly, the point charge accelerates from the center along the x axis to infinity.

(a) (8) Show that the electric potential at a point on the axis of the ring at a position x from the center is given by $V=k_{\mathrm{e}} Q /\left(x^{2}+R^{2}\right)^{1 / 2}$.
(b) (4) Find the potential energy at the particle at the initial and final positions.
\qquadCheck if solution is continued on the back.
(c) (7)Show that the ultimate speed of the point charge is $v=\left(\frac{2 k_{e} Q^{2}}{M R}\right)^{1 / 2}$
(d) (5) Determine the three components of the electric field at distance x from the ring center.

1. $\mathbf{(2 0 \%}$) In 1911 Rutherford, Geiger and Marsden conducted an experiment in which they had an alpha particle, having charge $+2 e$ and mass $6.64 \times 10^{-27} \mathrm{~kg}$ hits a gold sheet $(+79 e)$.
a) (7) An electric field $E=1 \mathrm{~V} / \mathrm{m}$ is applied on the alpha particle. How long must E be applied so that, starting from rest, the alpha particle reaches a velocity of $v=10^{7} \mathrm{~m} / \mathrm{s}$.
b) (7) Determine the analytical expression of the minimum distance the alpha particle can get to the gold.
c) (6) Use the numerical values in order compare d it to the radius of an atom which is about $10^{-9} \mathrm{~m}$. What is d ?
\qquadCheck if solution is continued on the back.

SCRATCH PAPER

Nothing on this page will be graded

